OpenMP

A “Hands-on” Introduction to
OpenMP”

Tim Mattson

Intel Corp.
timothy.g.mattson@intel.com

Acknowledgements: J. Mark Bull (EPCC), Mike Pearce (Intel), Larry Meadows
(Intel), Barbara Chapman (SBU), Bronis de Supinski (LLNL), and many others
have contributed to these slides over the years.

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components and
reflect the approximate performance of Intel products as measured by those tests. Any difference in
system hardware or software design or configuration may affect actual performance. Buyers should
consult other sources of information to evaluate the performance of systems or components they are
considering purchasing. For more information on performance tests and on the performance of Intel
products, reference www.intel.com/software/products.

All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, VTune, and Cilk are trademarks of Intel
Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations
that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction
sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this
product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and
Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Preliminaries: Systems for exercises

Blue Gene
ssh <<login_name>>@yvesta.aclf.anl.gov
The OpenMP compiler
Uncomment the line in .soft then run the resoft command

+mpiwrapper-x| Use either
Xlct++_r —gsmp=omp << file names>> system or
even your

X86 cluster laptop if

ssh <<login_name>>@cooley.aclf.anl.gov you wish

The OpenMP compiler
Add the line to “.soft.cooley” and then run the resoft command
+intel-composer-xe
icc —gopenmp —03 << file names>>

Copy the exercises to your home directory

$ cp /projects/ATPESC2016/openmp
You can just run on the login nodes or use qsub (to get good timing numbers)
To get a single node for 30 minutes in interactive mode

gsub —AATPESC2016 —n 1 —t 30 -1k

Preliminaries: Part 1

e Disclosures

— The views expressed In this tutorial are those of the
people delivering the tutorial.
— We are not speaking for our employers.
— We are not speaking for the OpenMP ARB

* We take these tutorials VERY seriously:

— Help us improve ... tell us how you would make this
tutorial better.

Preliminaries: Part 2

 Our plan for the day .. Active learning!
—We will mix short lectures with short exercises.

—You will use your laptop to connect to a multiprocessor
server.

 Please follow these simple rules

— Do the exercises that we assign and then change things
around and experiment.

— Embrace active learning!

—Don’t cheat: Do Not look at the solutions before you
complete an exercise ... even if you get really frustrated.

Plan

Module Concepts Exercises
8:30 | | OpenMP core Intro to OpenMP Hello_world
concepts Creating threads Pi_spmd A[10Am
10:30 | | Working with Synchronization Pi_spmd_final |LBe2K
threads Parallel loops Pi_loop
Single, master, and more
<« Noon
1:00 | | Managing data and Data Environment Mandelbrot set || Lunch
tasks tasks area
Racy tasks
Recursive pi 3 PM
s
3:30 Break

Understanding
shared memory

Memory Model
Threadprivate

Monte Carlo pi

OpenMP beyond
SMP

SIMD
Devices and OpenMP

Jaobi Solver

... Plus a set of “challenge problems” for the evening program.

Plan

Module Concepts Exercises
8:30 | | OpenMP core * Intro to OpenMP « Hello_world
concepts « Creating threads Pi_spmd

| 10 AM

Break

OpenMP” overview:

CSOMP FLUSH #pragma omp critical

CSOMP THREADPRIVATE (/ABC/) CALL OMP SET NUM THREADS (10)

~sof OpenMP: An API for Writing Multithreaded
Applications

C$Ol =A set of compiler directives and library routines for
parallel application programmers
CS =Greatly simplifies writing multi-threaded (MT) programs [p

in Fortran, C and C++

C : : : .
=Standardizes established SMP practice + vectorization and
#p heterogeneous device programming
C$OMP PARALLEL COPYIN (/blk/) CSOMP DO lastprivate (XX)

Nthrds = OMP GET NUM PROCS () omp set lock (lck)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

OpenMP basic definitions: Basic Solution stack
Versions 1.0to 3.1

User layer

Application
x Compiler variables

% OpenMP Runtime library

&

é OS/system support for shared memory and threading
0p)]

=

T

Shared Address Space

OpenMP basic definitions: NUMA Solution stack
Version 4.0-4.5

Supported with first touch policies plus
End User newer constructs such as places,
omp_proc_bind, teams, and more
Application

Compiler variables
OpenMP Runtime library

0OS/system support for shared memory and threading

Shared Address Space | Shared Address Space Shared Address Space

Shared Address Space

OpenMP basic definitions: Target solution stack

Version 4.0-4.5

Supported (since OpenMP
4.0) with target, teams,

distribute, and other
constructs

.

Compiler variables

OpenMP Runtime library

OS/system support for shared memory and threading

Shared Address Space | Shared Address Space Shared Address Space

Shared Address Space

Core Core Core Caore
PCle
Client L2 L2 L2 L2
Logic
\
GDDR MC ‘ITDIITDI ITDIITDI|
GoORMC| -¢ arT| far - - e far |
N ey _
a1 a1 21 21 ‘
3J0) 3l0) aJ0) aJo)

‘GDDR MC
GDDR MC

Host

Target Device: Intel® Xeon Phi™

DRAMI/F

DRAMI/F 1!"; '»i\i ii ;-! HOSTIF

coprocessor

Target Device: GPU

dNAY™A dNNY¥Aa E1T N 2- e

dNIAVAa

OpenMP core syntax

« Most of the constructs in OpenMP are compiler directives.
#pragma omp construct [clause [clause]...]
- Example
#pragma omp parallel num_threads(4)

« Function prototypes and types in the file:
#include <omp.h>
use omp_lib

« Most OpenMP* constructs apply to a “structured block”.

— Structured block: a block of one or more statements with
one point of entry at the top and one point of exit at the
bottom.

- It's OK to have an exit() within the structured block.

12

Exercise 1, Part A: Hello world
Verify that your environment works

* Write a program that prints “hello world”.

#include<stdio.h>
int main()

{

int ID =0:

printf(“ hello(%d) ”, ID);
printf(“ world(%d) \n”, ID);

13

Exercise 1, Part B: Hello world
Verify that your OpenMP environment works

* Write a multithreaded program that prints “hello world”.

#include <omp.h> Switches for compiling and linking
#include <stdio.h> _
int main() gcc -fopenmp Linux, OSX
{ pgcc -mp pgi
#pragma omp parallel _ _ _
{ icl /Qopenmp intel (windows)
_ icc —qopenmp intel (linux, OSX)
int ID = 0O;

printf(“ hello(%d) ”, ID);
printf(“ world(%d) \n”, ID);

}
}

14

Exercise 1: Solution
A multi-threaded “Hello world” program

« Write a multithreaded program where each thread prints

“hello world”.
#include <omp.h> €= OpenMP include file
#include <stdio.h> I
int main .
{ 0 Sample Output:

Parallel region with

#pragma omp parallel &~ | default number of threads | hello(1) hello(0) world(1)
{ world(0)

int ID = omp_get_thread_num(); hello (3) hello(2) world(3)

printf(" hello(%d) ”, ID);
printf(" world(%d) \n”, ID);

}
}
End of the Parallel region

world(2)

Runtime library function to
return a thread ID.

15

OpenMP overview:
How do threads interact?

* OpenMP is a multi-threading, shared address model
— Threads communicate by sharing variables.

* Unintended sharing of data causes race conditions:

— Race condition: when the program’s outcome changes as the threads
are scheduled differently.

* To control race conditions:
— Use synchronization to protect data conflicts.

« Synchronization Is expensive So:
— Change how data is accessed to minimize the need for synchronization

16

OpenMP programming model:

Fork-Join Parallelism:

¢ Master thread spawns a team of threads as needed.

¢ Parallelism added incrementally until performance goals are met,
l.e., the sequential program evolves into a parallel program.

Parallel Regions

A Nested
Master / | \ Parallel

Thread region
in red / ‘
4: :}4:) :;‘4: -/
\\ 2 \\\ % \\ e /7
_ A —— —_ /
\ / /

Sequential Parts .

Thread creation: Parallel regions

 You create threads in OpenMP* with the parallel construct.
« For example, To create a 4 thread Parallel region:

double A[1000]; Runtime function to
Each thread omp_set _num_threads(4); « reguest a certain
executes a #pragma omp parallel number of threads
copy of the {
code within Int ID = omp_get_thread _num();
the pooh(ID,A);

Efgicl:(tured } \ Runtime function
returning a thread ID

e Each thread calls pooh(ID,A) for ID = 0 to 3

* The name “OpenMP” is the property of the OpenMP Architecture Review Board 18

Thread creation: Parallel regions

* You create threads in OpenMP* with the parallel construct.
« For example, To create a 4 thread Parallel region:

clause to request a certain

double A[1000]; number of threads
Each thread
executes a #pragma omp parallel num_threads(4)
copy of the {
code within Int ID = omp_get_thread _num();
the pooh(ID,A);

Efgicl:(tured } \ Runtime function
returning a thread ID
e Each thread calls poonh(ID,A) for ID =0 to 3

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

19

Thread creation: Parallel regions example

double A[1000];
omp_set _num_threads(4);

#pragma omp parallel

« Each thread executes the
same code redundantly.

{
Int ID = omp_get_thread num();
double A[1000]; pooh(ID, A);
}
omp_set_num_threads(4) printf(“all done\n”);

A single
copy of Ais
shared __» pooh(0,A) pooh(1,A) pooh(2,A) pooh(3,A)
between all
threads.

printf(“allm Threads wait here for all threads to finish
before proceeding (i.e., a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

Exercises 2-4,6:
Numerical integration

Mathematically, we know that:

1
4.0 1= -
™.
SN j n dxX =TT
S +X)
A 0
N
—~ \ We can approximate the integral as a
o sum of rectangles:
= 20}
<
q—
I N
<
L F(X)AX = TT
i=0
Where each rectangle has width Ax and
0.0 1.0 height F(x,) at the middle of interval i.

21

Exercises 2-4,6: Serial Pl program

static long num_steps = 100000;

double step;

int main ()

{ inti; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){
X = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

See OMP_exercises/pi.c

22

Exercise 2

» Create a parallel version of the pi program using a parallel
construct:

#pragma omp parallel.
« Pay close attention to shared versus private variables.
* In addition to a parallel construct, you will need the runtime

library routines

Number of threads in the team

—int omp_get_num_threads();/

—int omp_get_thread num();— Thread ID or rank

—double omp_get_wtime();

—omp_set_num_threads(); Time in Seconds since a
- fixed point in the past

Request a number of
threads in the team

Exercise 2 (hints)

« Use a parallel construct:
#pragma omp parallel.

* The challenge is to:

— divide loop iterations between threads (use the thread ID and the
number of threads).

— Create an accumulator for each thread to hold partial sums that you
can later combine to generate the global sum.
* In addition to a parallel construct, you will need the runtime
library routines
— int omp_set_num_threads();
— int omp_get_num_threads();
— int omp_get_thread _num();
— double omp_get_wtime();

24

Results*: The SPMD pattern

 QOriginal Serial pi program with 100000000 steps ran in 1.83 seconds.

#include <omp.h-

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int i, nthreads; double pi, sum[NUM_THREADS]; threads 1t
step = 1.0/(double) num_steps; SPMD
omp s=t num_threads(NUM_THREADS);

#pragma omp paraliel 1 1.86
i
inti, id nthrds; 2 1.03
double x;
id =omp_get thread num(); 3 1.08
nthrds = omp get num _threads();
it (id —0) nthreads = nthrds; 4 0.97
for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {

¥ = (i+0.5)"step;
sum[id] +=4.0/{1.0+x™x);
1

for(i=0, pi=0.0;i<nthreads;i++)pi += sumli] * step;

*Intel compiler (icc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 25

Why such poor scaling?

* If independent data elements happen to sit on the same cache line, each
update will cause the cache lines to “slosh back and forth” between threads
... This is called “false sharing”.

False sharing

L1 $ lines

HW thrd. 2 HW thrd. 3

=

Sum|[1]

Sum|2]

L1 $ lineg]

Sum|O0]

|
Sum(i] | s.um[s]I

== W

Shared last level cache and connection to I/O and DRAM

* If you promote scalars to an array to support creation of an SPMD program,

the array elements are contiguous in memory and hence share cache lines

... Results in poor scalability.
» Solution: Pad arrays so elements you use are on distinct cache lines.

26

#define PAD 8

Example: Eliminate false sharing by padding the sum array
#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2
void main ()
int i, nthreads; double pi, sum[NUM_THREADS][PAD];

{

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

int 1, id,nthrds;

double x;

id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;

/[assume 64 byte L1 cache line size

AN

Pad the array so
each sum value is
in a different
cache line

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {

x = (i+0.5)*step;
sum[id][0] += 4.0/(1.0+x*x);
}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i][0] * step;

27

Results*: pl program padded accumulator
 QOriginal Serial pi program with 100000000 steps ran in 1.83 seconds.

Example: eliminate False sharing by padding the sum array

#include <omp.h=

static long num_steps = 100000, double step;

fidefine PAD 8 fI assume 64 byte L1 cache line size
#define NUM_THREADS 2

vioid main ()
{ int i, nthreads; double pi, sum[NUM_THREADS]PAD}; threads 1t 1st

e ne et o

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS); SPMD | SPMD

#pragma omp parallel padded

“{ 1.86 1.86

inti, id.nthrds:

el et e oot o

double x;
id=omp_qget thread numi);

1.03 1.01

nthrds = omp_get _num_threads();
if (id ==0) nthreads = nthrds;

1.08 0.69

for (i=id, sum[id]=0.0;i< num_steps; i=itnthrds) {
¥ = (i+0.5)"step;

AW |IN|PF

0.97 0.53

sum[id][0] += 4.0/(1.0+x*%);
i

for(i=0, pi=0.0;i<nthreads:i++)pi += sum[i][0] * step;

ki

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

28

Plan

Module Concepts Exercises
. <
10:30 | | Working with « Synchronization Pi_spmd._final
threads
pul

Synchronization

Synchronization is used to
impose order constraints and

_ o to protect access to shared
« High level synchronization: data

—critical
—atomic
—barrier
—ordered
* Low level synchronization
—flush
—locks (both simple and nested)

Discussed later

30

Synchronization: critical

« Mutual exclusion: Only one thread at a time can enter a
critical region.

float res;
#pragma omp parallel
{ floatB; inti,id, nthrds;
Id = omp_get _thread num();

nthrds = omp_get_num_threads();

Threads walit
their turn — onIy for(i=id;i<niters;i+=nthrds){
one at a time B = big_job(i);

calls consume()

#pragma omp critical
res += consume (B);

}

hints were added to critical in OpenMP 4.5 to suggest a locking strategy based on intended use of the
critical construct (e.g. contended, unconteded, speculative,, unspeculative)

31

Synchronization: atomic

« Atomic provides mutual exclusion but only applies to the update
of a memory location (the update of X in the following example)

#pragma omp parallel

{
double B;

B = DOIT():

#pragma omp atomic
X += big_ugly(B);

}

32

Synchronization: atomic

« Atomic provides mutual exclusion but only applies to the update
of a memory location (the update of X in the following example)

#pragma omp parallel

{
double B, tmp;

B = DOIT():

tmp = big_ugly(B);

#pragma omp atomic
X += tmp;

Atomic only protects the
read/update of X

Additional forms of atomic were added in 3.1 (discussed later) ”

Exercise 3

* |n exercise 2, you probably used an array to create space for
each thread to store its partial sum.

* If array elements happen to share a cache line, this leads to

false sharing.

— Non-shared data in the same cache line so each update invalidates the
cache line ... in essence “sloshing independent data” back and forth

between threads.

« Modify your “pi program” from exercise 2 to avoid false
sharing due to the sum array.

Pi program with false sharing*

 QOriginal Serial pi program with 100000000 steps ran in 1.83 seconds.
ExampleAslmpIeParallelplprngram

#include <omp.h-

static long num_steps = 100000; double step;
#define NUM_THREADS 2

void main ()

i int i, nthreads; double pi, sum[NUM_THREADS];

step = 1.0/(double) num_steps;
omp s=t num_threads(NUM_THREADS);

#pragma omp paraliel
i
inti, id nthrds;
double x;

id =omp_get thread num();

nthrds = omp get num _threads();

it (id —0) nthreads = nthrds;

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
¥ = (i+0.5)"step;
sum[id] +=4.0/{1.0+x™x);

ki

for(i=0, pi=0.0;i<nthreads;i++)pi += sumli] * step;

Recall that promoting sum to an
array made the coding easy,
but led to false sharing and
poor performance.

threads St
SPMD
1 1.86
2 1.03
3 1.08
4 0.97

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

35

Example: Using a critical section to remove impact of false sharing

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);
#pragma omp parallel

Create a scalar local

{ o - to each thread to
int i, id, nthrds; double x, sum; accumulate partial

id = omp_get_thread_num(); SUMS.

nthrds = omp_get_num_threads();

if (id ==0) nthreads = nthrds;
for (i=id, sum=0.0;i< num_steps; i=i+nthrds) { No array, so

x = (i+0.5)*step; n;’ false
sum += 4.0/(1.0+x*x); sharing.

}
#pragma omp critical Sum goes “out of scope” beyond the parallel
pi += sum * step; &= region ... so you must sum it in here. Must
} protect summation into pi in a critical region so
} updates don’t conflict

36

Results*: pi program critical section
 Original Serial pi program with 100000000 steps ran in 1.83 seconds.

#include <omp.h>

static long num_steps = 100000; double step;
#define NUM_THREADS 2

void main ()

omp_set_num_threads(NUM_THREADS);
#pragma omp parallel

{
inti, id, nthrds; double x, sum;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;
for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);
}
#pragma omp critical
pi += sum * step;
}
}

Exam ple: Using a critical section to remove impact of false sharing

{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

threads st 1st SPMD
SPMD SPMD critical
padded
1 1.86 1.86 1.87
2 1.03 1.01 1.00
3 1.08 0.69 0.68
4 0.97 0.53 0.53

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

Example: Using a critical section to remove impact of false sharing

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel
{ Be careful where

you put a critical

int i, id,nthrds; double x; :
section

id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id ==0) nthreads = nthrds;
for (i=id, sum=0.0;i< num_steps; i=i+nthreads){
x = (i+0.5)*step;
#pragma omp critical &=
pi += 4.0/(1.0+x*x);

What would happen if
you put the critical
section inside the
loop?

pi *= step;

38

Example: Using an atomic to remove impact of false sharing

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel Create a scalar local to
{ each thread to

int i, id,nthrds; double x, sum; <€ accumulate partial

id = omp_get_thread_num(); sums.

nthrds = omp_get_num_threads();
if (id ==0) nthreads = nthrds;

for (i=id, sum=0.0;i< num_steps; i=i+nthrds){ No array, so
x = (i+0.5)*step; no false

sum +=4.0/(1.0+x*X); €= sharing.

}

sum = Sum*step;- Sum goes “out of scope” beyond the parallel
#pragma omp atomic region ... so you must sum it in here. Must
pi +=sum ; protect summation into pi so updates don’t
} conflict

39

Plan

Module Concepts Exercises
Working with
threads « Parallel loops * Pi_loop

Alternatives to SPMD

A parallel construct by itself creates an SPMD or “Single
Program Multiple Data” program ... i.e., each thread
redundantly executes the same code.

* How do you split up pathways through the code between
threads within a team?

—Worksharing constructs

= Loop construct

= Sections/section constructs
= Single construct

+~Task constructs

|
Discussed later

41

The loop worksharing constructs

* The loop worksharing construct splits up loop iterations
among the threads in a team

#pragma omp parallel

{ Loop construct name:
#pragma omp for

for (1=0;1<N;I++){ «C/C++: for

NEAT_STUFF(l);
} \ *Fortran: do
}

The variable | is made “private” to each
thread by default. You could do this
explicitly with a “private(l)” clause

42

Loop worksharing constructs
A motivating example

Sequential code for(i=0;i<N;i++) {a[i] = a[i] + b[i];}

#pragma omp parallel

{
Int id, i, Nthrds, istart, iend;
OpenMP parallel id = omp_get_thread_num();
region Nthrds = omp_get_num_threads();

Istart = id * N / Nthrds;

lend = (id+1) * N / Nthrds;

If (id == Nthrds-1)iend = N;
for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}

OpenMP parallel
region and a
worksharing for
construct

#pragma omp parallel
#pragma omp for
for(i=0;i<N;i++) {ali] = a[i] + b[i];}

Loop worksharing constructs:
The schedule clause

« The schedule clause affects how loop iterations are mapped onto threads
— schedule(static [,chunk])

— Deal-out blocks of iterations of size “chunk” to each thread.
— schedule(dynamicl[,chunk])

— Each thread grabs “chunk” iterations off a queue until all iterations have
been handled.

— schedule(guided[,chunk])

— Threads dynamically grab blocks of iterations. The size of the block starts
large and shrinks down to size “chunk” as the calculation proceeds.

— schedule(runtime)

— Schedule and chunk size taken from the OMP_SCHEDULE environment
variable (or the runtime library).

— schedule(auto)

— Schedule is left up to the runtime to choose (does not have to be any of the
above).

OpenMP 4.5 added modifiers monotonic, nonmontonic and simd. »

loop work-sharing constructs:
The schedule clause

Schedule Clause

When To Use

STATIC

Pre-determined and
predictable by the
programmer

Least work at
runtime :
scheduling done

b

DYNAMIC

Unpredictable, highly
variable work per
iteration

N

GUIDED

Special case of dynamic
to reduce scheduling
overhead

AUTO

When the runtime can
“learn” from previous
executions of the same

loop

at compile-time

Most work at
runtime :
complex
scheduling logic
used at run-time

45

Combined parallel/worksharing construct

* OpenMP shortcut: Put the “parallel” and the
worksharing directive on the same line

double res[MAX]; inti; double res[MAX]; inti;
#pragma omp parallel #pragma omp parallel for
{ for (i=0;i< MAX; i++) {
#pragma omp for res[i] = huge();
for (i=0;i< MAX; i++) { }

res[i] = huge();
}

) . /‘
These are equivalent I

46

Working with loops

« Basic approach
— Find compute intensive loops

— Make the loop iterations independent ... So they can safely execute in
any order without loop-carried dependencies

— Place the appropriate OpenMP directive and test

Note: loop index
inti, j, AIMAX]; “i” is private by inti, A[MAX];
j=5:; default \#pragma omp parallel for

for (i=0;i< MAX; i++) { for (i=0;i< MAX; i++) {
intj =5 + 2*(i+1);

j +=2;
All] = bigf(N Remove 100p /’A[i] = big(j);
} carried J

dependence

a7

Nested loops

e For perfectly nested rectangular loops we can parallelize
multiple loops in the nest with the collapse clause:

#pragma omp parallel for collapse(2)

for (int i=0; i<N; i++) { N
for (int 3=0; J<M; J++) { Number of loops
to be
""" parallelized,
} counting from
} the outside

* WIll form a single loop of length NxM and then parallelize
that.

« Useful if N is O(no. of threads) so parallelizing the outer loop

makes balancing the load difficult.
48

Reduction
e How do we handle this case?

double ave=0.0, AIMAX]; inti;
for (i=0;i< MAX; i++) {
ave + = AJi];

}

ave = ave/MAX:

* We are combining values into a single accumulation variable
(ave) ... there is a true dependence between loop iterations
that can’t be trivially removed

 This is a very common situation ... it is called a “reduction”.

« Support for reduction operations is included in most parallel
programming environments.

49

Reduction

* OpenMP reduction clause:
reduction (op : list)
* Inside a parallel or a work-sharing construct:

— A local copy of each list variable is made and initialized depending
on the “op” (e.g. 0 for “+7).
— Updates occur on the local copy.

— Local copies are reduced into a single value and combined with
the original global value.

* The variables in “list” must be shared in the enclosing
parallel region.

double ave=0.0, AIMAX]; inti;
#pragma omp parallel for reduction (+:ave)
for (I=0;i< MAX; i++) {
ave + = Alll;
}

ave = ave/MAX:

50

OpenMP: Reduction operands/initial-values

« Many different associative operands can be used with reduction:
* Initial values are the ones that make sense mathematically.

Operator | Initial value
+ 0)
* 1 Fortran Only
- 0 Operator | Initial value
min Largest pos. number AND. true.
max Most neg. number OR. false.
NEQV. false.
C/C++ only
Operator |Initial value IEOR 0
P 5 1OR. 0
& ~ ,
JAND. All bits on
| 0 EQV. true.
A 0
&& 1 OpenMP 4.0 added user defined reductions
|| 0 (discussed later). -

Exercise 4: Pi with loops

« Go back to the serial pi program and parallelize it with a loop
construct

 Your goal is to minimize the number of changes made to the
serial program.

52

Example: Pi with aloop and a reduction

#include <omp.h>

static long num_steps = 100000; double step;
void main ()
{ Nt 1; double X, PI, sum = 0.0; Create a team of threads ...
step = 1_0/(d0ub|e) num_ steps; without a parallel construct, you'll
_ never have more than one thread

#pragma omp parallel <

{

double x; <€

Create a scalar local to each thread to hold
value of x at the center of each interval

#pragma omp for reduction(+:sum)
for (I=0;I< num_steps; I++){

X = (1+0.5)*step;

Break up loop iterations

sum = sum + 4.0/(1.0+X*X ’ and assign them to

pI = step * sum;

threads ... setting up a
reduction into sum.
Note ... the loop index is

local to a thread by default.

53

Results*: pi with aloop and a reduction
 Original Serial pi program with 100000000 steps ran in 1.83 seconds.

; ExampIeF‘lwuha F— - & E——— P Loop
SPMD | SPMD critical

#include <omp.h> padded

static long num_steps = 10000 1.86 1.86 1.87 1.01

void main ()

{ inti double x, pi, sl 2 1.03 1.01 1.00 1.02
step = 1.0/(double) num_9
#pragma om parawwllel 3 1.08 0.69 0.68 0.80
{ 4 0.97 0.53 0.53 0.68

double x;

#pragma omp for reduction(+:sum)
for (iI=0;i< num_steps; i++)
¥ = (i+0.9)"step;
sum = sum + 4.0/(1.0+x™X);

}

pi = step * sum;

)

}

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

Plan

Module

Concepts

Exercises

Working with
threads

Single, master, and more

| Noon

Lunch

Synchronization: Barrier

 Barrier; Each thread waits until all threads arrive.

double A[big], B[big], C[big];

#pragma omp parallel

{

int id=omp_get thread num();

A[Id] - blg_Cé.llcl(Id); implicit barrier at the end of a for
#pragma omp barrier worksharing construct
#pragma omp for

for(i=0;i<N;i++){C[i]=big_calc3(i,A):}

#pragma omp for nowait
for(i=0;i<N;i++){ B[i]=big_calc2(C, 1);}

Alid] = big_calc4(id): ™~

} TN, - no implicit barrier
— implicit barrier at the end :
of a parallel region due to nowait

56

Single worksharing construct

* The single construct denotes a block of code that is
executed by only one thread (not necessarily the master
thread).

« A barrier is implied at the end of the single block (can
remove the barrier with a nowait clause).

#pragma omp parallel

{
do_many_things();

#pragma omp single
{ exchange boundaries(); }
do_many_other_things();

S7

Master construct

* The master construct denotes a structured block that is only
executed by the master thread.

* The other threads just skip it (no synchronization is implied).

#pragma omp parallel
{
do_many_things();
#pragma omp master
{ exchange boundaries(); }
#pragma omp barrier
do_many_other_things();

}

58

Sections worksharing construct

* The Sections worksharing construct gives a different
structured block to each thread.

#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section
X_calculation();

#pragma omp section
y_calculation();

#pragma omp section
z_calculation();

}

By default, there is a barrier at the end of the “omp sections”.
Use the “nowait” clause to turn off the barrier.

59

Synchronization: Lock routines 4 oo impies 2

o : _ memory fence (a
Simple Lock routines: “flush”) of all thread

— A simple lock is available if it Is unset. visible variables
—omp_init_lock(), omp_set lock(),
omp_unset_lock(), omp_test lock(), omp_destroy lock()
* Nested Locks

— A nested lock Is available if it is unset or if it is set but owned by
the thread executing the nested lock function

—omp_init_nest_lock(), omp_set nest_lock(),
omp_unset_nest lock(), omp_test nest lock(),
omp_destroy_nest lock()

Note: a thread always accesses the most recent copy of the lock,
so you don’t need to use a flush on the lock variable.

Locks with hints were added in OpenMP 4.5 to suggest a lock strategy based on

intended use (e.g. contended, unconteded, speculative,, unspeculative)
60

Synchronization: Simple locks

« Example: conflicts are rare, but to play it safe, we must assure mutual
exclusion for updates to histogram elements.

#pragma omp parallel for ook I Py
for(i=0;i<NBUCKETS:; i++){ A One lock per element of his I
hist[i] = O;

omp_init_lock(&hist_locksJi]
}

#pragma omp parallel for
for(i=0;I<NVALS;i++){
ival = (int) sample(arr]i]);
omp_set_lock(&hist_locks]ival]); > Enforce mutual
);

hist[ival]++; | | exclusion on update
omp_unset_lock(&hist_locksJival] to hist array

}

for(i=0;i<KNBUCKETS; i++)
omp_destroy lock(&hist_locksJi]);

~ Free-up storage when done. I

61

Runtime library routines

 Runtime environment routines:
— Modify/Check the number of threads

—omp_set_num_threads(), omp_get_num_threads(),
omp_get_thread_num(), omp_get_max_threads()
— Are we in an active parallel region?

—omp_in_parallel()

— Do you want the system to vary the number of threads dynamically
from one parallel construct to another?

—omp_set_dynamic(), omp_get_dynamic();
— How many processors in the system?
—omp_get_num_procs()

...plus a few less commonly used routines.

62

Runtime Library routines

* To use a known, fixed number of threads in a program,
(1) tell the system that you don’t want dynamic adjustment of the
number of threads, (2) set the number of threads, then (3) save the
number you got.

Disable dynamic adjustment of the

#include <omp.h> number of threads.
void main()
{ int num_threads; Request as many threads as

omp_set_dynamic(0); you have processors.

omp_set_ num_threads(omp_get num_procs());

#pragma omp parallel

{ Intid=omp_get thread nu mL();/

#pragma omp single

Protect this op since Memory
stores are not atomic

num_threads = omp_get _num_threads();
do_lots of stuff(id);

1 Even in this case, the system may give you fewer threads
than requested. If the precise # of threads matters, test for
it and respond accordingly.

63

Environment Variables

» Set the default number of threads to use.
- OMP_NUM_THREADS int_literal

« Control how “omp for schedule(RUNTIME)” loop iterations
are scheduled.

- OMP_SCHEDULE “schedule], chunk_size]”

* Process binding is enabled if this variable is true ... i.e., if
true the runtime will not move threads around between
Processors.

- OMP_PROC_BIND true | false

... Plus several less commonly used environment variables.

64

Plan

Module

Concepts

Exercises

1:00

Managing data and

tasks

Data Environment

<+

Mandelbrot set

area

Data environment:
Default sharing attributes

« Shared memory programming model:
— Most variables are shared by default

* Global variables are SHARED among threads

— Fortran: COMMON blocks, SAVE variables, MODULE variables
— C: File scope variables, static
— Both: dynamically allocated memory (ALLOCATE, malloc, new)

* But not everything is shared...

— Stack variables in subprograms(Fortran) or functions(C) called
from parallel regions are PRIVATE

— Automatic variables within a statement block are PRIVATE.

66

Data sharing: Examples

double A[10]; extern double A[10];
Int main() { void work(int *index) {
int index[10]; double temp[10];
#pragma omp parallel static int count;
work(index);
printf(“%d\n”, index[0]); }
}

A, 1ndex, count

A, index and count are
shared by all threads.

temp temp temp

temp is local to each
thread

A, index, count

Data sharing:
Changing sharing attributes

* One can selectively change sharing attributes for constructs
USing the fOIIOWing clauses* (note: list is a comma-separated list of variables)

— shared(list) All the clauses on this page apply
— private(list) to the OpenMP construct NOT to
— firstprivate(list) the entire region.

* The final value of a private variable inside a parallel loop can
be transmitted to the shared variable outside the loop with:
— lastprivate(list)
» The default attributes can be overridden with:
— default (private| shared| none)
default(private) 7in Fortran only

*All data clauses apply to parallel, worksharing, and task constructs
except “shared”, which only applies to parallel and task constructs

Data sharing: Private clause

 private(var) creates a new local copy of var for each thread.

— The value of the private copies is uninitialized
— The value of the original variable is unchanged after the region

Nomenclature: The
version of tmp prior

void wrong() { __—— |totheconstructis

int tmp = 0; | called the “original”
#pragma omp parallel for private(tmp) |y ariaple
tmp was not for (intj = 0; j < 1000; ++j)

Initialized tmp += j;

printf("%d\n”, tmp);

} e
tmp reverts to the value of
the original variable after the

construct (O in this case)

69

Data sharing: Private clause
When is the original variable valid?

» The original variable’s value is unspecified if it is referenced
outside of the construct

— Implementations may reference the original variable or a copy a
dangerous programming practice!

— For example, consider what would happen if the compiler inlined work()?

Int tmp;

void danger() { extern int tmp;
tmp = 0; void work() {

#pragma omp parallel private(tmp) tmp = 5;
work(); }
printf(“%d\n”, tmp);

} \ unspecified which
” copy of tmp
‘ tmp has unspecified value I

70

Firstprivate clause

 Variables initialized from a shared variable
« C++ objects are copy-constructed

Incr = 0;
#pragma omp parallel for firstprivate(incr)
for (I =0; 1 <= MAX; I++) {

If ((1%2)==0) incr++;

A[l] = incr;

) T

7

Each thread gets its own copy of
iIncr with an initial value of O

Lastprivate clause

 Variables update a shared variable using value from the
(logically) last iteration

« C++ objects are updated as if by assignment

void sg2(int n, double *lastterm)

{

double x; int 1;
#pragma omp parallel for lastprivate(x)
for (I=0;1<n;i++){
x = a[i]*a[i] + b[i]*bl[i];
b[i] = sqrt(x);
} “x” has the value it held for
*lastterm = X; € —the “last sequential” iteration

(i.e., fori=(n-1))

'

Data sharing:
A data environment test

» Consider this example of PRIVATE and FIRSTPRIVATE

variables: A=1B=1,C=1
#pragma omp parallel private(B) firstprivate(C)

» Are A,B,C private to each thread or shared inside the parallel region?
« What are their initial values inside and values after the parallel region?

Inside this parallel region ...
e “A’ is shared by all threads; equals 1
e “B” and “C” are private to each thread.
— B’s initial value is undefined
— C’s initial value equals 1
Following the parallel region ...
e B and C revert to their original values of 1
e Ais either 1 or the value it was set to inside the parallel region

73

Data sharing: Default clause

* The default storage attribute is default(shared)
(so no need to use it)
— Exception: #pragma omp task

* To change default: default(private)

— each variable in the construct is made private as if specified in a
private clause

— mostly saves typing
o default(none): no default for variables in static extent.

Must list storage attribute for each variable in static
extent. Good programming practice!

Only the Fortran API supports default(private).

C/C++ only has default(shared) or default(none).

74

Data sharing: Default clause example

itotal = 1000

C$OMP PARALLEL PRIVATE(np, each)
np = omp_get num_threads()
each = itotal/np

C$OMP END PARALLEL These two code
fragments are
equivalent

itotal = 1000

C$OMP PARALLEL DEFAULT(PRIVATE) SHARED(itotal)
np = omp_get num_threads()
each = itotal/np

C$OMP END PARALLEL

75

Exercise 5: Mandelbrot set area

* The supplied program (mandel.c) computes the area of a
Mandelbrot set.

* The program has been parallelized with OpenMP, but we
were lazy and didn'’t do it right.

* Find and fix the errors (hint ... the problem is with the data
environment).

* Once you have a working version, try to optimize the
program.
— Try different schedules on the parallel loop.

— Try different mechanisms to support mutual exclusion ... do the
efficiencies change?

Plan

Module Concepts Exercises
U
<
Managing data and
tasks tasks
» Racy tasks
* Recursive pi | 3PM

Break

What are tasks?

« Tasks are independent units of work

« Tasks are composed of:
— code to execute
— data to compute with

* Threads are assigned to perform the
work of each task.

— The thread that encounters the task construct
may execute the task immediately.

— The threads may defer execution until later ~ Serial Parallel

What are tasks?

 The ta